Friday, November 19, 2010

Types of Factoring

  • Difference of two squares
    • a2- b= (a + b)(a - b)
    • (a-5)(a+5)
    • (x-10)(x-10)
    • (y-18)(y+18)
  • Trinomial perfect squares  
  •           x² + 6x + 9 = (x + 3)²
    •   x² − 4x + 4 = (x − 2)²
              x² + 10x + 25 = (x + 5)²
      • Sum of two cubes
        • a3 + b3
          • 3 - cube root 'em
          • 2 - square 'em
          • 1 - multiply and change
      Example 1: Factor x3 + 125.




      Example 2: Factor 8 x3 − 27.




      Example 3: Factor 2 x3 + 128 y3.
      First find the GFC. GFC = 2



      • Sum of two cubes
        • a3 - b3 
          • 3 - cube root 'em
          • 2 - square 'em
          • 1 - multiply and change 
            •  
            x3 − 27= (x − 3)(x2 + 3x+ 9)  

          125 − x3=(5 − x)(25 + 5x + x2)

        • 1 − a3=(1 − a)(1 + a+ a2)
        • Binomial expansion
          • (a + b)3 = Use the pattern
          • (a + b)4 = Use the pattern
          (5x - y)3 = 125x 3 -75x 2 y + 15xy 2 - y 3.
          (2x + 3y)4 =16x 4 +96x 3 y + 216x 2 y 2 +216xy 3 +81y 4



           



           
           

        Sunday, October 3, 2010

        Quadratic Functions : Circles, Parabola, Elipse, Hyperbola

         Standard form of a Quadratic: ax² + bx + cy² + dy+e=0

        If you have an equation like 7x² + 7y²=49 The equation is a circle, because a=c
        http://www.webmath.com/cgi-bin/grapher.cgi?answer=y&cgiCall=grapher&getPost=get&param0=3&param1=-&param2=&param3=&param4=-&param5=&param6=&param7=-&param8=&param9=-&param10=&param11=&ymax=10&xmin=-10&xmax=10&ymin=-10&to_plot=circle

        If a or c equals 0, the equation is a parabola ( ex: 7x² + 6y= 9)

        If a or c have different signs the equation is a hyperbola ( for example: 2x² - 2y²= 8)

        If you have an equation like 3x² + 4y²= 24 the equations is an ellipse, because a is not equal to c and the signs are the same


        (x-h)² +(y-k)² =r ²  Standard form of a circle

        Circle Formula      
         C=πr²                                                     Radius= diameter/2
         A=πr²                                                    Diameter=2r
        What is a trinomial perfect square?
        (a+b)²

        Multiplying Matrices

        To determine whether or not matrices can be multiplied you first have to write a dimensions statement.

        Example of a dimensions statement:
        [ 8 7 ]  [ 4 ]
        [ 5  2 ]  [ 1 ]

        Dimensions statement:
        2 X 2 times 2 X 1



        These matrices can be multiplied, so you would multiply row by column.
         Get the sum of the products.
        The numbers in yellow tell you that you can multiply the matrices.
        The numbers in green tell you the size of the final matrix.

        Friday, September 10, 2010

        Error Analysis

        https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiBuEjGM4eKWbMitwFPxma5zerReOCdH3uhCqs7NQVEbteXkNzvzQrjhVZlt7FnacxrjhqFZwgAtY3dbl3_eBwK-LLTgmvNolJOaPOOTRxgdI4oBtbHGWNAsQpRRmdvUw7YoKzMObbX31U/s1600/Page_4_Problem_9.jpg

        Value of x is going up by 5 and the slope should be 10/5 or 2 not 10/1. Inserting the points, the final equation will be solved.  Y is not equal to 9+10x in the chart

        https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEghNQLHG6o9cST9mDIkoC671psI0OOdb3aafpdUWq7LCEB89yOfl_UI7SiztwvCGmdERKkRfD_W7VRfhQ__XRHMbs138ZvqDdDpfVZnvJSQMY2NJFPdO9wgXChsLlicBsYbFGAHZKPitdg/s1600/Page_8_Problem_16.jpg

        To have a point it must try to solve both equations. So (1,2) only solves the first one and not the second one

        https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiHHwE-PSjRlFhywerLEnP98IAKsDXyu9J1-6UrJePYjL1zdcszsMT6jrubOwT9dY2LWwT1t7tcpqFeNrY335sMcFmgUCWE3Yvqsnhk_7yaZyoHS69BYPURJDx7o-UkoCAB1V_cJDxbxY8/s1600/Page_19_Problem_22_and_23.  

         20)shading is correct
          should be dotted line and not solid .
         #21 the solid line is correct, but the shading should be below the line, not above it.

        https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgtHC9QYK3cgnpvPGXc1n3WSjbApC0AIAg5V3L58TfaGgPPpq-M35QTjRAv6yWo_IPc-CDzIabtkn1nLNUIZRdUZYM36kygzU8JwAyAs1_IxSFff-UXf4NF-52CiNV9sEy11RPpYU_NHk4/s1600/Page_21_Problem_20_and_21.jpg

        Monday, September 6, 2010

        Graphing y=a|x-h|+k


        y = a|x - h| + k
        Although most books won't call the point (h,k) the vertex (as in quadratics) but it will either be a maximum or minimum value for the absolute value function.
        If a > 0 , then (h,k) is the lowest point of the graph.  (opens upward)
        If a < 0 , then (h,k) is the highest point of the graph.  (opens downward)

        Types of Systems


        Case 1
        Case
        Case 3
        graph of intersecting lines
        graph of parallel lines
        graph with one apparent line




        Independent system:
        one solution point
        Case 2
        Case 3
        graph of intersecting lines
        graph of parallel lines
        graph with one apparent line


        Independent system:
        one solution and
        one intersection point
        Inconsistent system:
        no solution and
        no intersection point
        Case 3
        graph of intersecting lines
        graph of parallel lines
        graph with one apparent line


        Independent  and consistent system:
        one solution and
        one intersection point
        Inconsistent system:
        no solution and
        no intersection point
        Dependent system:
        the solution is the
        whole line
        graph of intersecting lines
        graph of parallel lines
        graph with one apparent line